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Fractal Random Walks 
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We consider a class of random walks (on lattices and in continuous spaces) 
having infinite mean-squared displacement per step. The probability distribution 
functions considered generate fractal self-similar trajectories. The characteristic 
functions (structure functions) of the walks are nonanalytic functions and satisfy 
scaling equations. 
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ble distributions; nondifferentiable functions. 

1. INTRODUCTION 

Many of the complex systems of interest today are without an immediately 
apparent scale of length. Pattern formation may exhibit a strange structure 
of clusters within clusters or waves within waves with no limit in either 
direction. The purpose of this paper is to present some random walk 
models of sufficient flexibility to exhibit interesting hierarchical structures. 
These random walk processes involve unusual probability distributions for 
the displacement per step. For certain parameter regimes, the walks have 
infinite spatial moments, leading to nonstandard continuum limits and 
unusual statistics. Perhaps more interestingly, these walks have the follow- 
ing additional properties: (i) they provide a simple realization in stochastic 
processes of the "fractals" of Mandelbrot (=) ; (ii) the characteristic functions 
(structure functions) have highly nonanalytic behavior at all points; (iii) 
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they lead to an analog, in a probabilistic context, of real-space renormal- 
ization group transformations. (2) 

In Section 2 we summarize the basic properties of (Markovian) ran- 
dom walks, with particular emphasis on the qualitative differences between 
walks with a finite mean-squared displacement per step, which are ulti- 
mately diffusive in character, and walks with infinite mean-squared dis- 
placement per step. The latter case includes the discrete-time version of the 
"LSvy flight" discussed by Mandelbrot (1) (as an example of a stochastic 
process with a "fractal" trajectory), but the relation to fractals is made 
more explicit by particular examples presented in Sections 3 and 4. The 
one-dimensional example of Section 3 ("Weierstrass random walk") has 
been discussed briefly elsewhere, O) and its structure function is the cele- 
brated nondifferentiable function of Weierstrass. (4) Its higher-dimensional 
analog is given in Section 4. Section 5 discusses fractals and Section 6 gives 
a generating function formalism for continuous-time processes. 

2. DIFFUSIVE AND NONDIFFUSIVE RANDOM WALKS 

For a random walk in discrete time, taking place in a space of 
dimension s, we denote by P,(x) the probability density function (p.d.f.) for 
the position X, of the walker after n steps and we letp(x) denote the p.d.f. 
for the displacement of the walker at each step (i.e., the p.d.f, of the 
random variables X, +~ - X~, which are taken as independent and identi- 
cally distributed). Since 

Pn + 1 (X) ~-" f p (X - y) Pn (Y) dSy (1) 

the solution for P,(x), given that the walker starts from the origin [i.e., 
P0(x) = 8(x)], is easily found by Fourier transforming: 

P,(x) = (2~r)l, fexp(-iq" x)/~(q)d~q (2) 

where 

and 

fin (q) = (/7 (q) }~ (3) 

(q) = f exp(iq, x)p (x) P d'x (a) 

The qualitative features of the walk are determined by the behavior of 
p(x) as Ixl ~ oo, or equivalently by the behavior of fi(q) as Iql ---> O. If p(x) 
decays sufficiently rapidly as [x I ~ oo to ensure the existence of the first two 
cumulants 

<x> =fxe(x) .x. :=fx>(x),.x- <x: 
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we then have (s) 

fi(q) = 1 + ilt" (x)  - �89 ~ q/2(x~) + o(Iql 2) 
i = 1  

It has been assumed here that 

( x ; )  = . . . . .  

and 

(6) 

(7) 

<x, xj> = (8) 

As the number of steps becomes larger a continuous-time can be intro- 
duced and a diffusion constant D and velocity V can be defined in the 
standard manner. Gaussian behavior, in accordance with the central limit 
theorem (6) for P(x, t) 

P(x, t ) - -  (4~rDt } - ' /2exp { - I x  - vt[2/(4Dt)} (9) 

with the right-hand side being the solution, for the initial condition P(x, 0) 
= 8(x), of the Fokker-Planck (or Smoluchowski) equation (7) 

0P - - v .  VP + DV2p (10) 
Ot 

When ( x ) =  0 we obtain the classical diffusion equation, while if ( x ) ~  0 
we have a diffusing packet of probability with center-of-mass velocity v. 

In the present paper we shall be considering walks for which (x 2) 
= oo, so that the long-time behavior is not diffusive, apart from borderline 
cases in which the integral (5) defining o a diverges slowly enough that (9) 
holds, with a nonstandard scaling of length and time replacing the usual 
diffusion constant D = o2/(2"1). [We shall encounter such borderline cases 
in specific examples considered in the paper. They illustrate the general 
theorem (8) that for a one-dimensional walk with p(x)  not concentrated at 
one point, we obtain a Gaussian distribution in the large n limit if and only 
if 

Y x 2 p ( x ) d x ~ L ( y )  as y ~ o o  (11) 
Y 

with L(y)  slowly varying, i.e., LOty)/L(y)--)  1 a s y - ~  oo, for all )t > 0.] 
If a nondiffusive process is to be a stationary stochastic process with 

translational invariance it must satisfy the (Bachelier-Smoluchowski- 
Chapman-Kolmogorov)  chain equation (7) 

P(x,  t) = f P ( x  - y, t ' )P(y,  t - t') dSy (12) 

and we are led to the L&y  (stable) distributions, which are characterized in 
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one spatial dimension by 

/;(q, t) = exp(i '/qt - ctlql~[1 + iron(q,/~)signq] ) (13) 

where/~, v, y, and c are real constants, with 0 < / t  < 2, - 1 < v ~< 1, c >/0 
and 

o~(q,/x) = (tan(�89 if / ~ 1 )  (14) 
(2/~r) lnlql  if ~ = 1 

For/~ = 2, P(x, t) is Gaussian and all its spatial moments (including both 
the mean and variance) are finite. However, if /~ < 2, the variance is 
infinite, since in this case 

e(x,t) = O(Ixl -I -~)  as Ix l~oo (15) 

Moreover the mean displacement is not well defined when bt < 1, even for 
the symmetric or unbiased case [P(x,t)= P(-x,t)], since fxP(x,t)dx is 
not absolutely convergent. 

It is possible to generalize the theory of stable distributions to more 
than one spatial dimension (9) using multidimensional Fourier transforms. 
For the present paper we require only the result that an isotropic stable 
distribution of order/~ (0 </~ < 2) in s spatial dimensions has the multidi- 
mensional Fourier transform representation 

if(q, t) = f e x p ( i q  �9 x)e(x ,  t) d~x = exp( - ctlql ") (16) 

Using the Fourier inversion theorem for radial functions, (1~ the p.d.f, in 
(16) may be expressed in terms of a single integral involving the usual 
Bessel function: 

e(x ,  t) = (2~r)-~/21xll-~/2f0~176 l (qlxl)exp(-  ctq ~) dq (17) 

Only the cases /~ = 2 and /z = 1 lead to simple expressions for P(x, t) in 
terms of elementary functions, the former being the s-dimensional 
Gaussian distribution and the latter the s-dimensional generalization of the 
Cauchy distribution, 

r(�89 + �89 
P(x,t) = (18) 

rrs/2+ i/2(ixl2 + c2t2)s/2+ 1/2 

3. THE WEIERSTRASS RANDOM WALK 

We consider a symmetric random walk on the one-dimensional contin- 
uum for which the p.d.f, for a displacement x at any step is 

oo  

p(x)-a~-al  ~ a - n ( 8 ( x - A b " ) + ~ ( x + A b " ) }  (19) 
n=O 
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with a, b, and A constants, a > 1, b > 1, and A > 0. The constant A has the 
dimensions of length and is introduced to facilitate passage to a continuum 
limit, while a and b are dimensionless. If b is integral, then the walk is 
confined to a lattice of spacing A. The p.d.f. (19) has the property that a 
step of length Ab" is a times more likely than the next longest step (Ab "+ 1). 
It follows, roughly speaking, that the walker will make on the average 
about a steps of a given order of magnitude (and many smaller steps), 
forming a cluster, before moving an order of magnitude further away and 
beginning a new cluster. If the walk is terminated after a modest number of 
steps, then whatever the values of a and b, a clustered pattern will be seen. 
This does not guarantee, however, that distinguishable clusters will persist 
as the number of steps taken becomes large, and we return to this point in 
Section 5. 

The mean-squared displacement per step is 

oo 

( x  2) = a -  1 a 2 {b2/a) ~ (20) 
n = 0  

so that when b 2 < a, (x2) is finite and the walk has diffusive behavior after 
a large number of steps. The case b 2/> a requires a separate analysis to 
determine the behavior of/~(q) in the neighborhood of q -- 0. We write 

f i(q) = ?,(Alql) (21) 

where 

oo 

?~(k)-  a -  1 ~ a-ncos(b,k)  (22) 
a n=0 

[Since p(x)  is discrete, the Fourier transform reduces to a Fourier series. 
When b is integral, ?~(k) is the structure function in the terminology of lattice 
walk theory. (~1"12)] The series (22) was first considered (a) by K. Weierstrass 
(in the latter half of the nineteenth century) as an example of a function 
which is everywhere continuous, but nowhere differentiable with respect to 
k (in certain parameter regimes). Hardy ~3) has established that if b ~> a, 
?,(k) has a finite derivative at no value of k [and it is known that under 
more restrictive conditions on a and b, ?~(k) even fails to have a well- 
defined infinite derivative, i.e., a vertical tangent, at any value of k]. The 
qualitative form of X(k) may be inferred directly from the functional 
equation 

~(k) = a- lX(bk)  + a -  l cosk (23) 
a 
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which the series (22) clearly satisfies. If we define 

( - -  1)nk 2n 

~h(k ) _ a -  1 ~ (2n)! (1------162"-a ) (24) 
a n = 0  

we are easily able to verify by direct substitution that )th(k ) is a holomor- 
phic function of k which satisfies (23). Hence 

~,(k) = 2ts(k ) + Xh(k ) 

where Xs(k) contains all the singular behavior of ~(k), and 

~(k)  = a -'~t,(bk) 
If we write 

X,(k) = k~a~(k) 
then the choice 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

= lna/lnb 
leads to the functional equation 

Q~(k) = Q.(bk) 
so that 

- 1 ~ ( -1)  "k2" 
h(k) a 

a n=0 (2n)i-~-ffL-lb 2n) +k~Ot'(k) 

where Q, is a periodic function of lnk with period tnb. (This argument is 
similar to one used in connection with the real-space renormalization group 
analysis of the free energy of an Ising lattice, (2'141 but the basic idea 
appears in a paper of Hardy,(15) who acknowledges its suggestion to him by 
a Mr. J. H. Maclagan Wedderburn.) 

A certain amount of analysis is necessary to exhibit the explicit form 
of Q~(k) and we defer the details to the Appendix. The basic idea, however, 
is simple enough and is used elsewhere in the paper. Replacing the cosine in 
(22) by a MeUin integral representation, we are able to pass from the series 
(22) to the contour integral 

1 fc+i~  ( a -  1)F(p)cos(�89 
2t( k ) - 1= -~i .,c _ ioo a--~ ~ -.~-~b-~- ~ dp (31) 

( - /~  < c = Re p < 0). Translation of the contour towards Re p = - ~ and 
use of the residue theorem returns a new series expansion for )t(k), of the 
form (30), with 

a - 1  ~ ( 2mri) ( 7r [ _ #  + 2mri t )  Q~,(k)- a ~ b  r - / z  + 1--ff-b cos ~- 

•  2mrilnk 
lnb ) (321 \ 
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provided that 1/2 </~ < 2. When 0 </x < 1/2, the series for Q~ must be 
summed using an appropriate convergence factor, while when/~ = 2, i.e., 
b 2 = a, we find from the contour integral argument that 

(- 1)"k 2n 
X ( k ) = l +  a - 1  k 

a n = 2  (2n~ { i : - ~ - '  } 

(a2alff_aa-1)k2 { l n ( l ) +  1 lna + 3.~ - y }  + kgQ2(k) (33) 

where 0~(k) is defined by the same series as Q~(k), except for the omission 
of the n = 0 term, and ), --~ 0.5772 denotes Euler's constant. 

It is possible to exhibit a formal continuum limit for the Weierstrass 
walk by allowing the length scale A and the time ~- between steps to 
approach zero together in a suitable fashion. From (1), 

1 {Pn+l(X) _ Pn(x)} = ; ~ o  _1 ( p ( x  - x ' ) - -  8(x  -- x ' ) }Pn(x ' )dx '  (34) 
g m T 

so that as & r ~ O, 

P(x , t )  = f'_': lim [ 1 [ p ( x  - x') - 8 (x  - x ' ) ]}  P ( x ' , t ) d x '  (35) 

or, in Fourier space, 

{' l} O--ifi(q,t) = lim - [ f i ( q ) -  1 lP(q,t) (36) 
A,r--->0 7 

When/ ,  > 2 (so that (x  2) < ~ )  it follows from (6) that (36) reduces to the 
Fourier transform of the diffusion equation. However (36) also remains 
useful for 0 </~ < 2. From (30) and (32) it is evident that for ~ < 2 the 
joint limit 

a =  1 +aA=o(A) ,  b =  1 + f l A + o ( 4 ) t  
(37) 

A ~ / r ~ c o n s t  0 < a < 2/3 ) 
yields (3) 

0 O--t i f (q '  t) = - D,[q[~/~ff ( q, t) (38) 

with D t a constant; i.e., P(x,  t) has a symmetric L6vy distribution of order 
a / /3  < 2. In the borderline case /~ = 2 a joint limit A , r ~ 0  based on a 
power-law scaling between length and time does not suffice, but if we take 

( a =  l + aA + o(A), b =  l + 2e~A + o(A) ) (39) 

A21n(1/A)/r = const 

we obtain the diffusion equation (illustrating the parenthetical remark in 
Section 1 concerning walks with (x=) divergent, but not too rapidly 
divergent). 
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4. THE FRACTAL R A Y L E I G H - P E A R S O N  WALK 

The problem of a random walk in the plane for which the step length 
is fixed, but the possible step directions are isotropically distributed, was 
first solved (in a different context) by Lord Rayleigh, (16) but is usually 
named after K. Pearson, (17) who first posed the problem in the present 
context. A generalization of Pearson's walk to s spatial dimensions and 
variable step length is obtained by writing 

p(X) = { AslX[ s-1 } -lpl(lX[) (40) 

with pl(x) the p.d.f, for a step of length x ( 0 < x < o o )  and A~= 
2~r'/2/F(ls) the surface area of the unit hypersphere [x I = 1. Using the 
theory of Fourier transforms for radial functions (1~ it may be shown that 

~\1-s/2j P(q) s]/2 - [ (Iql~)/~ 1 (~)  d ~  r( �89189 q ) (41) 

To generate a clustered trajectory we choose (by analogy with the one- 
dimensional Weierstrass walk) 

o0 

pl([X[ ) _ a -  1 ~ a -n3( [x[_  Ab ~) (42) 
a n=0 

and find that 

f i ( q ) _  a -  1 
a 

a-'f(�89189 ) (43) 
n = 0  

The general form of/7(q) may be obtained from a functional equation, as in 
Section 3, 

fi(q) = a-1/6(bq) + a .  ,1 F(�89 ) (44) a 

and a detailed representation of fi(q) is derived in the Appendix. With 
k = Iq la  and/~ = lna/lnb as before, we find 

1 1)"(�89 
/~(q) 12 I 

2.; a n=o n!F(n+�89 2 " ) - - - - -  - -  

a - 1  + (�89189 

F(- �89 # + m~ri/lnb) [ 2m~riln(�89 ] (45) 
F(--~!s- ~ ~. ~-__- ~ - ~ )  exp lnb X 

for 0 </~ < 2, while if/~ = 2 the n = 1 term in the first sum and the m = 0 
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term in the second sum are replaced by 

( a -  1)F(�89189 2 
- a lnaF(1  + k s )  ( ln (2 /k )+�88189  +�89189 (46) 

Here (18) ~(z) = (d/dz) lnF(z)  and ~(2) = 1 - ,/, ~p(~) = - y  - 21n2 + 8/3,  
~(z + 1)=  ~ ( z ) +  1/z.  The differentiability of the series (43) may be 
analysed using the identity (is) 

d ( z-~J~(z) ) = - z-~J~+ ~(z) (47) 

and a well-known theorem on term-by-term differentiation of series. (]9) If 
> �89 (3 - s), the structure function of the walk is differentiable with respect 

to k = A[q[ for all k > 0. The condition/~ >�89 - s) reduces to (i) ~ > 1/2, 
in two dimensions and (ii)/~ > 0 in three or more dimensions. At k = 0, the 
known result that ?~(k) - 1 = O(k ~) ensures differentiability if/~ > 1. Since 
the sum over m in (45) contains oscillatory terms qualitatively similar to the 
one-dimensional Weierstrass case, we conjecture that if the structure func- 
tion is differentiated several times, a continuous but nondifferentiable 
function will result (but we do not investigate this here). 

The continuum limit may be calculated as for the Weierstrass random 
walk, and one finds: 

(i) i f O < # < 2 : a - l ~ a h ,  b - l ~ f l h ,  rccA~', 

~tt / ; (q '  t) -- - const- [ql=/~/;(q, t) (48) 

(ii) if/~ = 2: a - l ~ a A ,  b - l ~ 2 a A ,  rcx A21n(1/A), 

~ t / ; ( q '  t) = - const �9 [q[2y(q, t) (49) 

The limiting distributions are the isotropic L6vy distribution and the 
Gaussian distribution, respectively. 

5. FRACTAL D I M E N S I O N S  

It has been noted in Section 2 that the Weierstrass walk will generate a 
hierarchy of clusters of points visited, with about a subclusters per cluster 
and a linear scaling b between clusters of adjacent order in the hierarchy, 
for a walk of modest duration. When the duration of the walk increases to 
infinity, two possibilities arise: 

(i) the clusters remain distinguishable for all time; 
(ii) the clustering pattern is blurred out by the walker returning to fill 

in the interstices between clusters. 
The latter case arises when the walk is persistent, and the former when the 
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walk is transient. Persistence for a lattice walk means certainty for return to 
the origin (and implies certainty of visiting all lattice sites), while for a walk 
in continuous space it means certainty of return to any neighborhood of the 
origin (and implies certainty of visiting any neighborhood of any given 
point). P61ya's theorem (2~ establishes the transience of all walks in three or 
more dimensions, and the persistence of unbiased mean-squared displace- 
ment per jump in one or two-dimensions. 

It is known (~l'z~) that persistence of a walk is equivalent to the 
divergence of f [1 - f i (q)]- ldSq,  the region of integration being any small 
sphere enclosing q = 0. This leads to the conclusions that (i) the (one- 
dimensional) Weierstrass random walk is transient if 0 </L < 1 and persis- 
tent otherwise, ~3) and (ii) the fractal Rayleigh-Pearson walk ( in two or 
more dimensions) is transient if 0 < ~ < 2. 

Having used the term "fractal" somewhat casually in connection with 
the walks of the present paper we now show how these walks are related to 
the "fractals" of Mandelbrot ~1) and other workers. Mandelbrot has pro- 
posed the term "fractal" to denote a set of points having noninteger 
dimension, when the dimension is inferred from properties of the set 
according to a particular rule. In the case of a self-similar set, for which a 
finite subset f~ may be broken into N identical parts, each of which (when 
magnified by a linear factor ~) is identical with the original, one defines the 
fractal dimension as 

D F = In N / I n  ~ (50) 

For the random walks considered in the present paper, we have argued 
that for transient walks a hierarchy of clusters of points visited will be 
established. This hierarchy is not geometrically self-similar, but rather is 
self-similar in an average sense, since each cluster is made up of about a 
subclusters, etc. We therefore interpret 

tz = t n a / l n b  (51) 

as a fractal dimension, in an average sense, provided that the walk is 
transient. This is consistent with Mandelbrot's introduction of fractal 
terminology for random process governed by L6vy (stable) processes. (~) 
The deduction of the fractal dimension from rigorous analysis of L6vy 
processes is rather deep, but we have shown here that the choice of a 
suitable discrete analog leads to a simple understanding of these matters, 
and we shall enlarge on this in a subsequent publication. 

6. RANDOM WALK GENERATING FUNCTIONS 

Many important properties of random walks are most easily derived 
from random-walk generating functions. These functions also appear natu- 
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rally in continuous time random walk models (26) where a distribution 
function for pausing times between steps exists. The generating function 
that corresponds to the walk characterized by (1) is [with P0(x) -= 6(x)] 

G(z,x)  = ~ z 'P . (x)  (52) 
n=0 

Then from (2) and (3) with/7(q) given by (4) 

G (z, x) - 1 ~ exp( - iq- x) d~q (53) 

When the walks have certain symmetries this integral may be simplified. In 
a one-dimensional walk on a lattice with lateral spacing A, the only possible 
occupation sites for the walker are at x = 0, + A, + 2 5  . . . . .  With P,(I) 
denoting the probability that x = IA at the nth step, and G(z,l)=--- 
~,~=oz"P,(l), it follows from (53) and (21) that 

1 ,~ exp(- ik l )  
G(z,l) = ~ v-~ i ~ z~-(~ dk (54) 

In the case of the Rayleigh-Pearson walk, s-dimensional spherical 
symmetry allows one to reduce the number of integrations in (53). We 
restrict ourselves here to the cases s = 2, 3. Others follow in a similar 
manner. When s = 2, (41) becomes 

~00 ~176 
(55a) 

and when s = 3, we use the well-known relationship between J|/2(x) and 
sin x to obtain 

sin(lql() 
P(q) = f0 Iql-----T- (55b) 

In any number of dimensions fi(q) for the Rayleigh-Pearson walk depends 
only on the radial variable q = [q[. Hence the integration in (53) can be 
performed immediately over the other variables. For example when s = 2 
and 3 we have, respectively, 

d2q = qdqdO with 0 < 0 < 2qr (56a) 

d3q = q2sinOdOdOdq with 0 < 0 < 7r and 0 < q, < 2~r (56b) 
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Let r = Ixl. In the s = 2 case (53) becomes 

1 foof2~qexp(- iqrcosO)dOdq 
a ( ~ , x )  - ( 2 ~ )  2 . 0  . 0  i - -  

l oo qSo(qr) aq (57) 
- 2 ~ f o  ~ - ~  

where fi(q) is given by (55a). In the s = 3 case 

l fo , (z~( .qZsinOexp(- iqrcosO,dOd*dq 
o ( ~ , x )  - ( 2 ~ )  ~ . o  .o .o, ~ 1 - q ( q )  

_- 1 (~  q2sin qr dq (58) 
~r --73o 2qr[1 - z f (q) ]  

where in this formula/~(q) is given by (55b). Note that m general for the 
Rayleigh-Pearson walk, G(z, x) is a function of ixl - r alone. In a continu- 
ous time random walk composed of an alternating sequence of steps and 
pauses, with step distribution p(x) and pausing time distribution ~(t), with 
p(x) being independent of t, the probability of the walker being at x at time 
t is (26) 

1 fc+i~  . t [ l_~, (u)]G[q~,(u) .x]au (59) 
P(x , t )  = 2-'~.1c--io0 e -g 

Here ~*(u) is the Laplace transform of ~(t). Properties of this function for 
various forms of if(t) will be discussed elsewhere. 

APPENDIX 

The small-k behavior of functions defined for k > 0 by series of the 
form 

ep(k) = ~, a-~f(b'k) (A.1) 
n = 0  

may be formally exhibited by replacing f by its inverse Mellin transform 

l cc+ioo b"k f(b "k) = ~ Jc-i~ ( ) -?r(p) dp (A.2) 

interchanging orders of summation and integration, and summing the 
geometric series ~ a - ~ b - ' V  to yield a contour integral 

1 fc+i~ ,b_p]- ,k_Pr(p)d p (A.3) 
~, (k )  = ~ i  ~ c - i ~  [1  - a -  

A series for ~(k) at small k is then extracted by translation of the contour 
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and use of the residue theorem. This device has been rigorously imple- 
mented by Hardy and Littlewood (23) in the case f ( x ) =  exp ( -yx ) ,  where 
the convergence is sufficiently strong to make a rigorous justification of 
each step in the analysis easy. To evaluate the structure functions for the 
Weierstrass and fractal Rayleigh-Pearson walks, the obvious choices of 
cos(x) and F(�89189 l -x/2js/2_ l(X) for f(x) do not lend themselves easily 
to a rigorous analysis. However, subtracting 1 from each of these functions 
enables the integration contour to be placed in a region of superior 
convergence. 

We consider first the fractal Rayleigh-Pearson walk, for which few 
technical devices are required in the analysis. Taking 

f ( x )  = F(�89189 ,(x) - 1 (A.4) 

we note that (24) 

f(x) = ~-~ c-ioe F(�89189 ~ d/7 (A.5) 

with - 2  < c = Re(p) < 0. The integrand has simple poles at p = 0, - 2 ,  
- 4  . . . . .  Restricting c to the interval m a x ( - 2 , - / ~ )  < c < 0, we may 

justify the interchange of orders of summation and integration by absolute 
convergence,(19) since 

tr(x + iy)[ = (2Tr)l/2ly[X-'/2exp( - �89 + o(1)} (A.6) 

as lyl We obtain the contour integral 

1 (c+i~  k-e2"-lr(�89189 
co(k) = ~ i a c - i ~  r(-~S-~-p-~l ~ UI-~ p] dp (A.7) 

The integrand has poles at p = 0, - 2, - 4 . . . .  and also at p = Pm= -- t ~ + 
27rim/lnb (m = 0, _ l, ___ 2 . . . .  ), where i~=lna / lnb .  We consider the 
contour integral in Eq. (A.7) taken around the rectangle with corners at 
p = c + ( 2 M +  1)Tri/lnb and p = - ( 2 N +  1 ) + ( 2 M +  1)~ri/lnb, with 
M , N  integral. As M ~  ae, the contributions from sides parallel to the real 
axis vanish and we obtain from the residue theorem the expansion 

N ( _  1),r(�89189 2. 

~b(k)=n=lE n!r(n  + �89 a-lb 2n) 

+ (�89 ~ ~ F(�89189 exp[ 2m~ri in ( k ) ]  
21nb m=--~ r( �89189 lnb 

1 k-p2p-'r(�89189 
"1- ~ i  d-(2N+l)-i  @ (A.8) 
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In the case when ~ is an even integer the series requires minor modification 
due to the occurrence of a double pole. In particular, if/~ --- 2 the n = 1 and 
the m -- 0 terms in the sum are replaced by 

(�89189 [ ln(2 /k)  + �88 + �89 + �89 + �89 (1.9) 
lnaF(1 + �89 

where ~ is the usual digamma function [~b(z)= (d/dz)lnF(z)]. As is well 
known, q~(z + 1) = ~(z) + z -I ,  if(2) = 1 - 7 and ff(5/2) = - 7 -  21n2 + 
8/3, with 7 denoting Euler's constant, so that for any value of s, the 
expression (A.9) is easily evaluated. Equation (45) is established by showing 
that the contour integral in Eq. (A.8) vanishes as N ~ ~ (a trite application 
of Stirling's formula). 

The analysis of the Weierstrass walk proceeds similarly, so long as 
/~ > �89 with the choice 

fe c + itm 1 x-pr(p)cos( �89 ~p) dp (A. 10) f(x) = cos(x) - 1 = ~ ~- i~ 

taking min(-/~,  - 2) < c = Re(p) < - �89 When ~ < �89 it is not possible to 
secure absolute convergence, but we may circumvent this difficulty by 
considering instead of Eq. (A.10) a function with a better behaved Mellin 
transform,(24) 

f(x) = cos(x)exp(-ex)  - 1 (c > 0) (A.1 l) 

1 fc+i~ x-eF(p)cos(parctan[1/e]) 
2~ri c-i~ (1 + e2) p/2 dp (A.12) 

We find that 

a -  nexp(-  ekb")cos(b'k) 
n=0 

,~ ( - k f ( 1  + e2) ' /2cos(narctan[1/e])  

n=0 ~ n!(1 - a-lb ") 
k/L(1 + e2)/~/2 ,~ 

F(pm)coS(pmarctan [ l / e  I ) 
+ lnb m=2"-~ 

I2m~riln(l+e2)l/2] (2mTri lnk)  (A.13) 
• exp lnb exp - 

with appropriate modification if # is integral, and p,. defined as before. The 
desired transformation is obtained by taking the limit e--> 0. The uniform 
convergence of the sum over n allows the limit to be passed through the 
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sum, and so 

= ( -  1)-k2~ 
a-"cos(b"k)--- ~ (2n)!(1 . - 'b  2") 

n = 0  n ~ 0  - -  

+ ~kS ~0m:-~lim ~ F(pm)COS(pmarctan[1/c]) 

E 1 (  2m~ ) 2m~ri In(1 + r 1/2 exp Ink 
• exp In b in b 

(a.14) 

We have therefore established Eqs. (32) and (33), with the proviso that the 
doubly infinite sum of oscillating terms in Eq. (32) may require a conver- 
gence factor when/~ -K< �89 Elsewhere O) the authors have derived Eq. (32), 
using Poisson's summation formula, and given an alternative convergence 
factor (the series being summed by Abelian means). We remark that a 
theorem of Kolmogoroff and Seliverstoff (25) ensures the convergence of the 
oscillatory series in Eq. (32) for almost all values of In k when 0 </~ < �89 
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